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NON-INVASIVE TECHNOLOGIES FOR INTRACRANIAL
PRESSURE/VOLUME MEASUREMENT

A. Ragauskas, V. Petkus
Telematics Scientific Laboratory, Kaunas University of Technology, Lithuania

Abstract – The paper shows that innovative technologies for non-
invasive monitoring of the cerebral blood flow autoregulation,
cerebral blood flow pulse and slow waves also for the
registration of the reactions to the neurodiagnostic tests can be
developed on the basis of the precise measurement of brain
parenchyma acoustic characteristics. The innovative
technological equipment for such measurement has been
developed. The clinical studies proving the validity of the
concepts chosen have been carried out. For the first time the
innovative non-invasive method has been designed for the ICP
absolute value measurement without the necessity of individual
calibration of system “non-invasive meter – patient”.
Keywords - Intracranial pressure, non-invasive monitoring,
time-of-flight method, transcranial Doppler.

I. INTRODUCTION

Head injury has devastating economic and social
consequences both to the victim and to the society that
supports the victim. The World Health Organization estimate
that by the year 2010, one in ten families will have a family
member with a head injury. Since head injury is more
prevalent in the young and the associated disability does not
significantly reduce life expectancy, the result is that the
social and economic costs incurred by health and welfare
organizations are long term and substantial [1].

Direct measurement of intracranial pressure (ICP) remains
the mainstay of detecting brain swelling after the head injury
before pressure rises to levels damaging the brain function.
At present, the measurement techniques are invasive and
require either the placement of a catheter-tip strain gauge
device into the brain tissue directly or a fluid filled catheter
placed into the cerebral spinal fluid space within the brain.
However, the implementation of such procedures is related to
entailing the risk of causing intracerebral bleeding, risk of
infection inside the brain or other undesirable phenomena
that can deteriorate the outcome. To avoid these problems,
the non-invasive ICP monitoring technology is needed.

The ideas of the measurement of ICP non-invasively have
been appearing since 1980. There are many patents [2,3,6-
16], the authors of which attempt to find the objects or
physiological characteristics of cerebrospinal system that
would be related to the ICP and monitor them non-invasively.
Most of the proposed monitoring technologies are based on
the ultrasound application and are capable of monitoring
physiological properties such as blood flow in intracranial or
intraocular vessels, pulsations of the cerebral ventricles,
cranium diameter or acoustic properties of the cranium.
However, there are a few main questions encountered by a lot
of authors of these works:

1) Which biophysical parameter of a cerebrospinal
system is a stable and repeatable function of ICP or cerebral
perfusion pressure (CPP) only?

2) Is that function linear and more or less independent on
such main influential factor as arterial blood pressure (ABP)
and how it depends on the cerebral blood flow
autoregulation?

3) How to calibrate non-invasively the system
"individual patient – non-invasive ICP or CPP meter”?

Unfortunately the answers to these questions based on
reliable clinical studies still have not been found.

Recently, a new method [2] for non-invasive measurement
of intracranial volume or pressure has been created in
Telematics Scientific Laboratory of Kaunas University of
Technology (Lithuania) which uniquely purports to measure
the intracranial pulsation of small intracranial blood vessels.
This method may be of more clinical value as the
microvasculature is the major source of cerebrovascular
resistance which determines the intracranial cerebral blood
flow and it is responsible for cerebral blood flow
autoregulation. Another innovative method [3] includes a
means based on the transcranial Doppler multi-depth
technique for a non-invasive absolute ICP value
measurement without the individual calibration problem.

The main applications of these devices are the following:
- fast non-invasive diagnosing of brain injury during the
first “golden hour” after the casualty case,
- non-invasive brain or spinal cord injury physiological
monitoring during the intensive care,
- non-invasive diagnosing of brain physiological status
during the rehabilitation period,
- diagnosing and monitoring of the reactions of cerebral
blood flow autoregulation system and parenchymal blood
volume/ICP on different pharmacological influences or
physical loads (space medicine, sport medicine, etc.).

Both innovative methods are described in this paper and
clinical results are also presented.

II. METHODOLOGY

The background of the non-invasive intracranial volume or
pressure measurement methodology is the relationships
between the ultrasound speed in the cerebral parenchymal
acoustic path and blood volume inside the cerebral
parenchyma (CBV), cerebrovascular resistance (CVR) and
also CPP, ABP and ICP. These relationships could be
explained by the changes of the diameter of cerebral
arterioles as a result of cerebral blood flow autoregulation
(Fig. 1). In the case of normal autoregulation (Fig. 1b) the
diameter of cerebral arterioles decreases (Fig. 1a) when CPP
increases within the linear range of CVR/CPP dependence
(Fig. 1c). The blood volume also changes inside the cerebral
parenchymal acoustic path (Fig. 1d) as a result of the
autoregulatory change of cerebral arterioles diameter. It was
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shown in our theoretical studies [4,5] that the relationship
between ultrasound speed inside the transintracranial
parenchymal acoustic path and the blood volume inside
cerebral parenchyma is linear.

In the case of normal cerebral autoregulation and stabilized
ABP, the axis of CPP could be presented as the axis of ICP
with the opposite direction (Fig. 1e). In Fig. 1e this situation
is presented as an ideal case when ABP=140 mmHg and ABP
is stable. In this case the relative change of ultrasound speed
increases linearly with the increment of ICP. In a more
general case Fig. 1e when CPP is changing as a result of ABP
and ICP changes, the relative change of ultrasound speed
decreases linearly with the increment of CPP.

Ultrasonic time-of-flight method for non-invasive cerebral
blood volume/ICP/CPP pulse waves, respiratory waves, slow
waves and trends monitoring. The concept of this method is
as follows [2]:
- the intraventricular or supraventricular parenchymal
acoustic path which crosses the human head is used (Fig. 2a).
The parenchymal acoustic path mainly consists of
parenchymal tissue, relatively small blood vessels (arterioles,
venules, capillary vessels) and a small amount of
cerebrospinal fluid (CSF) (Fig. 2b). The ultrasound speed
inside the parenchymal acoustic path mainly depends on the
blood volume (CBV) inside this path. The ultrasound
attenuation inside this path mainly depends on the
parenchyma tissue volume [4,5],
- to measure the relative value of ultrasound speed changes
inside the parenchymal acoustic path, this path is insonated
by supershort ultrasonic pulses, and the time-of-flight
measuring method is used,
- to compensate in a real-time and in situ the influences of
the extracranial tissue hemodynamics on the results of such
measurements, the same ultrasonic pulses and their echoes
from internal surfaces of the skull are used [17],
- the specially designed software is used to convert the
measured data into absolute or relative ICP or CPP values or
into the cerebral blood flow autoregulation state estimating
indices.

This is the only existing method of non-invasive
monitoring of cerebral parenchyma microvessel
hemodynamics.

Absolute ICP non-invasive measurement method. The
concept of this method [3] is as follows:

- the eye artery is used as a natural "transducer" which
has two segments - intracranial and extracranial. Intracranial
segment is compressed by ICP. Extracranial segment can be
compressed by the controlled external pressure applied to the
tissues surrounding the eye ball,

- the pressure balance is achieved when the absolute
value of external pressure PEXT is equal to the ICP (Fig. 3a).
In the case of balance the blood flow parameters in the
intracranial segment and extracranial segment of the eye
artery are almost equal independently of the absolute value of
arterial blood pressure, hydrodynamic resistance of the eye
veins, the pressure inside the eye ball and the initial absolute
values of the blood flow parameters in both segments of the
eye artery,

Fig. 1. Relationships between ultrasound speed in cerebral parenchymal
acoustic path and CBF, CPP, ICP, ABP, CVR and CBV

a)

b)
Fig. 2. The correct position of supraventricular (A - upper line) and

intraventricular (B - lower line) transintracranial parenchymal acoustic paths
(a) and structure of the microvascular acoustic path (c). The path consists of

external tissues, skull bones and a transintracranial parenchymal acoustic
path with the layers of blood, parenchyma tissue and CSF

- the specially designed two depth pulse wave
transcranial Doppler device is applied to identify
simultaneously the blood flow velocities in the intracranial
segment VI and extracranial segment VE of the eye artery.
The difference between those velocities ∆V is used to control
the pressure in pneumatic camera which is in a sealing
engagement with a perimeter around the eye. When pressure
PEXT in the pneumatic camera causes ∆V to approach close to
zero value, in that case PEXT becomes an indicator of the
intracranial pressure absolute value, i. e. ICP = PEXT (Fig. 3).
The eye artery is used like a “scales” (Fig. 3a) in this method.

Proceedings – 23rd Annual Conference – IEEE/EMBS Oct.25-28,  2001,  Istanbul,  TURKEY 

 



3 of 4

a)

b)
Fig. 3. The principle of absolute ICP non-invasive measurement method. The
difference between VI and VE must by minimized up to zero for obtaining a

balance between ICP and external pressure PEX applied to the eye

This is the only existing concept of a non-invasive absolute
ICP value measurement without the necessity to use
individual calibration of the system "individual patient / non-
invasive ICP meter". The preliminary clinical results of
ongoing comparative invasive / non-invasive ICP study show
that the resolution of this new method is up to ±3 mmHg.

III. RESULTS

The new non-invasive ultrasonic Vittamed monitor based
on the ultrasound speed in cerebral parenchymal acoustic
path measurement and which includes a real-time and in situ
compensation of the influence of the external tissue and skull
bones to the measurement results was designed and tested in
the intensive care units (ICU). The simultaneous ICP
monitoring with a new non-invasive Vittamed monitor and
Camino V420 invasive monitor was performed for ICU coma
patients after a closed head injury. The clinical results of
simultaneous ICP pulse waves, ICP reactions on the CO2
reactivity and the long term ICP trend monitorings and are
shown in Fig. 4 - Fig.6.

While attempting to prove a linear relationship between
the non-invasively measured ultrasound speed in a cerebral
parenchymal acoustic path and ICP, the readings from the
invasive ICP monitor were plotted against the readings of a
non-invasive ICP monitor (28 head injured patients) Fig 7a.
The non-invasive ICP data were calculated from the time-of-
flight measured data using the linear functions after the real-
time and in situ compensation of the influence of the external
tissue and skull bones on the measured time-of-flight data.
This experimental result shown in Fig 7a is the evidence that

the ultrasound velocity changes are linearly dependent on the
ICP as it was explained in Fig.1 and predicted during the
theoretical modeling of time-of-flight and blood volume
relationship inside the transintracranial parenchymal acoustic
path [4,5]. It is also very important that this linear
relationship is wide enough (0 to 50 mmHg) and is above and
below the critical ICP level.

Fig. 4. Simultaneous invasive and non-invasive records of ICP pulse waves
when ICP=60 mmHg (a), ICP=40 mmHg (b) and ICP=20 mmHg (c)

applying invasive and non-invasive devices (head injured patient in coma)

Fig. 5. Comparison of long term invasive and non-invasive ICP monitoring
data in the intensive care unit (patient in coma after closed head injury)
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Fig. 6. Comparison of invasive and non-invasive ICP data during CO2

reactivity tests

a)

b)
Fig 7. Readings from invasive ICP monitor plotted against readings of non-
invasive ICP monitor (28 head injured patients) in (a). Relationship between

the non-invasively measured ultrasound speed data and CPP in (b)

IV. CONCLUSION

1) The comparative studies of the new non-invasive
ultrasonic Vittamed monitor based on the ultrasound speed in
the cerebral parenchymal acoustic path measurement have
been performed for the first time in ICU. The results obtained
show that by applying the real-time and in situ automatic
compensation of the influence of the extracranial tissue and
skull bones on the measured data it is possible to achieve the
uncertainty better than ±2 mmHg for the long term non-
invasive ICP monitoring. The linear relationship between the
ultrasound speed in the cerebral parenchymal acoustic path
and the ICP has been proved by calculating the ICP data from
the non-invasively measured time-of-flight data. Such

relationship was obtained for the first time during the long
term monitoring in a wide range of ICP values from 0 mmHg
to 50 mmHg and it confirms the results obtained by
mathematical simulation. The performed simultaneous
invasive and non-invasive monitoring of the ICP pulse waves
shows a good agreement between the measured data.

2) The innovative method is proposed for ICP absolute
value non-invasive measurement, which is the only existing
method which does not require individual calibration of the
system "patient – non-invasive absolute ICP meter" [3].
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